Thawing Permafrost Could Leach Microbes, Chemicals Into Environment

Scientists are turning to a combination of data collected from the air, land, and space to get a more complete picture of how climate change is affecting the planet’s frozen regions.

Trapped within Earth’s permafrost – ground that remains frozen for a minimum of two years – are untold quantities of greenhouse gases, microbes, and chemicals, including the now-banned pesticide DDT. As the planet warms, permafrost is thawing at an increasing rate, and scientists face a host of uncertainties when trying to determine the potential effects of the thaw.

Click here to learn more

What Is the Greenhouse Effect?

Earth is said to be in a perfect "Goldilocks zone" away from the sun (not too cold, and not too hot), which enables life to thrive on the planet's surface. But Earth's balmy temperatures would not be possible without the greenhouse effect, which traps solar energy on Earth's surface and keeps the planet warm.

Click here to learn more

The future of bioenergy

Energy from biomass plays a large and growing role in the global energy system. Energy from biomass can make significant contributions to reducing carbon emissions, especially from difficult‐to‐decarbonize sectors like aviation, heavy transport, and manufacturing. But land‐intensive bioenergy often entails substantial carbon emissions from land‐use change as well as production, harvesting, and transportation. In addition, land‐intensive bioenergy scales only with the utilization of vast amounts of land, a resource that is fundamentally limited in supply. Because of the land constraint, the intrinsically low yields of energy per unit of land area, and rapid technological progress in competing technologies, land intensive bioenergy makes the most sense as a transitional element of the global energy mix, playing an important role over the next few decades and then fading, probably after mid‐century. Managing an effective trajectory for land‐intensive bioenergy will require an unusual mix of policies and incentives that encourage appropriate utilization in the short term but minimize lock‐in in the longer term.

Click here for full white paper

Research Team Advances Biological Alternative to Producing Common Petrochemical

For decades engineers have dreamed of programming organisms to sustainably produce ethylene, a chemical that is nicknamed “the king of petrochemicals” for its importance in plastics. Now, one hopeful pathway to this petrochemical is nearing reality, via a photosynthetic bacterium that is genetically specialized to turn sunlight and carbon dioxide (CO2) into ethylene. But before industry can load up on tanks of living green liquid, researchers are first overcoming some metabolic barriers around ethylene production.

Click here to learn more

Q&A With Meredith Doyle: Impatient To Save the World

Much to the annoyance of her physicist father, Meredith Doyle chose to study chemistry.

She chose that field, in part, to follow her own path, but also because chemistry builds everything in the world. And more than anything, Doyle wants to change the world as quickly as humanly possible. It is not surprising, then, that she is working on one of the biggest, most urgent global challenges—one that has infiltrated landfills, oceans, rain water, and fish worldwide: plastics waste.

Click here for full Q&A

Carbon Dioxide Soars to Record-Breaking Levels Not Seen in at Least 800,000 Years

There is more carbon dioxide in the atmosphere than there has been for 800,000 years — since before our species evolved.

On Saturday (May 11), the levels of the greenhouse gas reached 415 parts per million (ppm), as measured by the National Oceanic and Atmospheric Administration's Mauna Loa Observatory in Hawaii. Scientists at the observatory have been measuring atmospheric carbon dioxide levels since 1958. But because of other kinds of analysis, such as those done on ancient air bubbles trapped in ice cores, they have data on levels reaching back 800,000 years.

Click here to learn more

Greenhouse gases: Causes, sources and environmental effects

Behind the phenomena of global warming and climate change lies the increase in greenhouse gases in our atmosphere. A greenhouse gas is any gaseous compound in the atmosphere that is capable of absorbing infrared radiation, thereby trapping and holding heat in the atmosphere. By increasing the heat in the atmosphere, greenhouse gases are responsible for the greenhouse effect, which ultimately leads to global warming. (The effects of global warming can been seen across the globe.)

Click here to learn more

Earth's atmosphere: Facts about our planet's protective blanket

Earth's atmosphere is a thin band of air made up of numerous layers based on temperature. Without this protective blanket, life on Earth would not exist as it protects us from heat and radiation emitted from the sun and contains the air we breathe.

Though oxygen is crucial for life on Earth, it is not the primary component of our atmosphere. According to education site Vision Learning Earth's atmosphere is composed of approximately 78 percent nitrogen, 21 percent oxygen, 0.93 percent Argon, 0.04 percent carbon dioxide as well as trace amounts of neon, helium, methane, krypton, ozone and hydrogen, as well as water vapor.

Click here to learn more

Open Navigation